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Abstract 

We describe a new functional integral method for the computation of averages containing chronological exponentials of 
random matrices of arbitrary dimension. We apply these results to the rigorous study of the statistics of a passive scalar 
advected by a large-scale N-dimensional flow. In the delta-correlated case the statistics of the rate of line stretching appears to 
be exactly Gaussian at all times and we explicitly compute the dependence of the mean value and variance of the stretching 
rate on the space dimension N. The probability distribution function of the passive scalar is also exactly computed. Further 
applications of our functional integral method are suggested. 

1. Introduction 

Many exact results, explaining the advection of a passive scalar by an N-dimensional large-scale flow, 
have been known in turbulence theory from the very beginning. Batchelor [ 1 ] found exactly the form of the 
double passive scalar correlator in the case of a slow external velocity field. Kraichnan [2] established the 
Gaussian character of  the statistics of the line element in an N-dimensional flow in the limit of a velocity field 
6-correlated in time. For the same problem Cocke [3] proved the positivity of the rate of line stretching for a 
velocity field arbitrarily correlated in time. Recently, Shraiman and Siggia [4] found that at values exceeding 
the variance the passive scalar probability distribution function (p.d.f.) is exponential, at least for a shortly 
correlated velocity field. The two-dimensional problem was considered in detail in Ref. [5 ], where a central 
limit theorem for the statistics of the stretching rate was proven for a velocity field arbitrarily correlated in 
time and the rate of line stretching was calculated analytically. It was also proven there that, whatever the 
statistics of  the velocity field be, the statistics of the passive scalar (averaged over time locally in space) 
approaches Gaussianity with the increase of the Peclet number Pc (the pumping-to-diffusion scale ratio). 

The present paper is devoted to the generalization to arbitrary space dimensions of the field-theoretical 
approach proposed for the 2D case in Ref. [5 ]. 
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As it was shown by Kraichnan [2] and afterwards slightly reformulated by Falkovich and Lebedev [6] 
(see Section 2, where we follow the formulation of Falkovich and Lebedev), the statistics of a passive scalar 
advected by a random large-scale flow is completely described by the statistics of the line element in the flow. 
Thus, to study the statistics of the passive scalar we have to find the statistics of the line stretching first. 

In Section 3 (see also Appendix A) we describe a method for the computation of averages of functionals 
which contain a time-ordered exponential of an N x N traceless Hermitian matrix function. This method is a 
generalization of the one firstly introduced by Kolokolov [7,8] in the N = 2 case in the context of the theory 
of ferromagnets, and afterwards [9] applied to the study of one-dimensional localization. 

In the general N-dimensional case we establish a qualitative picture which is similar to the one observed in 
Ref. [ 5 ] for the 2D problem. The separation R of two points of a passive scalar blob embedded in the velocity 
flow stretches exponentially. The statistics of the rate of line stretching appears to be Ganssian with nonzero 
mean value ~[ and variance Lt. The dependence of 2 and A on the dimension N is calculated explicitly in the 
case of a a shortly correlated flow when the stretching rate p.d.f, is shown to be exactly Gaussian at all times. 

Finally, in Section 4 we find the local (without spatial averaging) p.d.f, of the passive scalar O(r) and the 
p.d.f, of the simultaneous product O(r~ )0(r2) in the case of a shortly correlated flow explicitly, through the 
computation of certain functional integrals of an auxiliary quantum mechanical problem. 

2. Formulation of the problem 

The advection of the scalar field 0 (t, r) is governed by the following equation, 

0 + u~V~O = 4~, (1) 

where u(t ,r)  is the external velocity field and O(t,r) is an external source, which are both assumed to be 
random functions of t and r. We suppose that the source 0 be correlated on a scale L and arbitrarily correlated 
in time. This means e.g. that the pair correlation function of the source (O (r~, t~)0 (r2, t2 )) = • (tt - t2 ,  rt2 ), as 
a function of the argument rm2 = Irm - r21, decays on the scale L. The same behavior is assumed for high-order 
correlation functions of the source. The velocity field may be multi-scale, its smallest scale being assumed to 
be larger than or of the order of  L. In the following we will specialize to the case of (O(r=, tm )~(r2, t2 )) = 
P2~2(r=2)J (t~ - t2), where/'2 has the physical meaning of production rate of 0 2. For simplicity we can simply 
put ~2(x) = 1 for x < L and ~2(x) = 0 for x > L (a more precise account of the form of~2 will not change 
the results up to logarithmic accuracy). 

Falkovich and Lebedev [6] showed that in the problem of finding the steady statistics of a passive scalar 
advected by a large-scale velocity field the averaging with respect to the velocity field and with respect to the 
external source can be separated. Such an approach was initially applied to the 2D case, but it maintains its 
validity in any space dimension. We will here formulate the problem following the same approach but omitting 
the details, which can be found in Refs. [6,5]. We have then 

4-oo 

O(t,r) f dt' O(t ' = - t ,  W( t )r ) ,  

o 

(2) 

where W(t)  satisfies ~ = ~ ;~', I~'(0) = 1 and a~P - V°v p (0, t) is the N x N matrix of the derivatives of 
the quasi-Lagrangian velocities vp referred to a frame which is locally comoving with the fluid at the point 
r = 0. & is assumed to be a traceless symmetric matrix random in time. 

The computation of the statistics of the simultaneous product O(r~ )0(r2 ) is thus reduced to the averaging 
of 



Q = P2f¢2(R(t))dt, 
0 
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(3) 

where now R(t)  = W ( t ) .  (rt -r2) describes the separation of  two fluid particles. This way the problem 
of finding the passive scalar statistics has been transformed to a purely kinematical one. Alternatively, 
;t (t) = In [R ( t ) / r ] / t  may be considered as the rate of  line stretching along some axis (whose particular choice 
is inessential since the velocity field statistics was chosen to be isotropic) of  a cloud embedded into the 
velocity field• Let us note that the kinematical problem of  studying the dispersion of  a pair of  N-dimensional 
Lagrangian tracers is by itself of  great interest. 

The matrix b describes the local structure of  the flow in the vicinity of  the point r = 0. We can analyze it 
by decomposing b in the standard way, 

I 0 0,2 . . .  CI,N ) 

C2,1 0 
# = 7~ + ~t + ,~h, 7~ = • .. , Ci,j = --Cj.i, (4) 

CN- I,N 

\ cN, t . . .  C~,N-I 0 

al 0 . • .  

0 a2 
& =  : 

• • •  

: ~v-I b2.1 0 " 
• . , as  = - a i ,  S h m  • . .  , 

0 ~=1 bN-l,l¢ 
0 ate b~,l . . .  blv, N-i 0 

bij = bj.i. 

(5) 

Here, 7~ is the antisymmetric part  of  b, inducing a rotation of  the passive scalar blob. The symmetric part  ,~ 
can be split in two: 6~ = ~ + ~h, St representing the stretching of the unit blob under the longitudinal velocity 
gradient and -Oh representing the shearing under the transverse velocity gradient. We will restrict to the case of  
an incompressible fluid, so that ,~t will be assumed to be traceless. We assume space isotropy of  the strain so 
that 7~, ,~t and ,~h are independent matrix processes random in time with zero mean and (Tr[S2]) = (Tr [ ,~ ] ) .  
In this paper  we will restrict ourselves mainly to the particular case of  a statistics of  b delta-correlated in time, 

( i f  ) DA4[b]  = D b e x p  -TD-~, £ d t  , £ =  ~ 1 ( T r [ S 2 I - - ~ T r [ 7 ~ 2 ] )  (6) 

We introduce two a priori different values Ds and Dr, characterizing the strain and vorticity amplitudes. Since 
all the averages we want to compute contain only the modulus R = IRI we can split IV into the product 
IV = Wr IVy, whose factors satisfy the following separate equations, 

I~'r + R Wr = O, l~s + ,.q' Ivs = O, (7) 

where 3 '  = l~r-lSivr. Since Ivr T = Ivr - l  we have I~al = R, and since the strain part of  the measure (6) 
is invariant with respect to the ,~ - .  ,¢' t ransformation (which is generally speaking not true in the finitely 
correlated case) we can completely exclude vorticity from our considerations and we have the freedom to 
choose Dr arbitrarily. This will be useful for the computations of  Section 3. 
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3. Averages of  t ime-ordered exponentials  

In this section we will consider the problem of  computing averages of  the form 

( / )  f 1 Trrl 2 f ( f i e ( T ) ) ,  ( f ( f i e ) )  = D~ exp -4--D (8) 

where r}(t), for 0 ~< t ~< T, is a Hermitian traceless N × N matrix function and 

fie(t) = 7"exp - ( s )d s  (9) 

is an SL(N)  matrix function, solution of f f  = r} fie with fie(0) = 1, given here in the form of a time-ordered 
exponential• The average (8) is difficult to compute due to the complicated form of  (9)• We will now introduce 
a non-linear variable change which reduces (9) to a product of  usual matrix exponentials without spoiling the 
Gaussian character of  the averaging weight. This method was firstly introduced by Kolokolov [7] in order to 
deal with the SL(2) case, which is relevant in the theory of the quantum Heisenberg ferromagnet. Here we 
will describe the generalization of this method to the SL(N)  case• 

Let us start by Gauss-decomposing the matrix fie(t) t ,  

f i e ( t )  = 
(10 i/ q/2~l (t) 1 

• . , ,  )< 

~%¢t)  . . .  ~';,u_~ (t) 

exp(/ ld ) 0 0 
°••  • 

0 

l Ft,2(t) . . .  F~,N(t) 

0 1 
× : 

FN-I,N(t) 
0 0 1 

N - I  

pN(t)  = - Z pi( t ) .  
i = l  

1 0 . . .  

~£~ (o) 1 
X • . • •  

~ t ~  ( 0 )  . . .  

After computing ~ = 1~ W - 1  it is easy to show that 

N N 

½ Tr(O2) = ½ Z  p~ + Z ~ i ~ ( p , F , e , ~ - ) ~ ) ~ ,  
i i , j  = I ; i> j  

0 

0 

UJN, N _ I  ( 0 )  1 

0 

(/) 0 exp pt~ dT 

- 1  

(10) 

(11) 

I Note that the form of (10), together with the initial condition ;~/(0) = l,  imply ~,j(O) = O, while the initial values 
¢i~" (0) are kept arbitrary. 
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where the ¥i+ are certain rational functions of  the arguments. We will then take the fields ¥i~ as new integration 
variables. As a matter  of  fact, it appears that the elements ~/~,j can be re-expressed as differential polynomials 
in the new variables (pi, ~ )  (se¢ in Appendix A the N = 3 case as an example).  After such a variable 
transformation the averaging weight ( 11 ) maintains by definition its Gaussian form. Of  course we have yet 
to compute the Jacobian of  the transformation (l/id) --* (Pi, ¥i~), which could in principle give a non-linear 
contribution. Fortunately this is not the case and the Jacobian has the following simple form (see Appendix 
A), 

N-I T ) 
J N c x e x p (  i ~ - - l ( N - i ) f p ' ( t ) d t o  " (12) 

Let us apply these results to the computat ion of  the statistics of  the stretching rate. Exploiting the isotropy 
condition we can choose Ro(0)  = r~la as the initial value of  R. From (10) we thus get 

R(t)  = r I + y ~ ( q j ~ ) 2  p l ( r )  dr  . (13) 
1z2 

This immediately gives the desired asymptotic expression for the stretching rate, 

T l/ 
2 ( T )  -~ -~ pl (r)  dr, T ---, oc. (14) 

0 

Up to this point we have not made use of  any particular property of  the measure (6). We thus succeeded 
in finding a representation of  the stretching rate as an integral of  a scalar function for arbitrary statistics of  
the velocity field. I f  we could show that p~ is a field finitely correlated in t ime we would immediately get a 
proof  of  a central limit theorem for the statistics of  I ( T ) .  This program can be carried on thoroughly in the 
same way as it was done for the N = 2 case in Ref. [5]. It is worth noticing that the positivity of  1, firstly 
established by Cocke [3], is essential in proving the "clus ter i~t ion"  property of  the field p~. Note lastly that 
still another way of  proving a central limit theory for the process has been recently proposed in Ref. [ 13 ]. 

In the case of  a delta-correlated statistics of  the velocity derivatives we are able to compute the statistics of  
,t explicitly at arbitrary times. From (6) we have 

£ = ½ T r [ ( S  + i~7~)21, (15) 

where a = Vies/Dr. However, we observed in Section 2 that the statistics of  2 cannot depend on a. Let 

us make use of  this arbitrarity by substituting c~ --. - i ,  R ~ iR, and therefore getting b --* ~ = S + i~,  
£ --* ½ Tr(~2),  Db --* Dd. We thus reduce to the already studied problem (9). After the variable transformation 
O/i,j) --* (Pi, ~'i,~) we get (j)l 

2).M = ~ ) p ~ / ± e x p  -]-~s ~dt  , ~ = p~ + (v-~ + - 2D, ( N -  i)p~. (16) 
o i =  1 i , j =  l;i>j i -  l 

The effective action (16) contains only terms which arc "neutral ~ with respect to the + "charge". Thus 
we immediately recognize that in the delta-correlated case expression (14) is exact at arbitrary times: the 
"non-neutral" terms ( ¥ - ) 2  give a zero contribution and (13) can be replaced by 

R(t) = exp P l ( r )  dr  . (17) 
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Performing Gaussian integration with respect to ~,± and P2 . . . . .  pu we obtain the following exact results for 
the statistics of the field p~, 

( J ) N 
Dpl exp 4Ds(N - 1) [ P l -  D s ( N -  1)12dr (18) 

0 

and for the p.d.f, of the stretching rate 2, 

- ( - ,19> T'I;t;TI = nD,-~-  1) exp - 4 D s ( N -  1) 

the latter appears to be exactly Gaussian with Lyapunov exponent 2 = Ds(N- 1) and variance ,J = 
2Ds (N - 1 )/NT. For T tending to infinity 2 tends asymptotically to a deterministic quantity. The ratio 22/J, 
in accord with Kraichnan [2], is proportional to the space dimension N. 

4. Passive scalar statistics 

A point of great physical interest is the computation of the p.d.f, of the passive scalar. Carrying over to 
arbitrary dimensions the approach shown in Ref. [5] we observe that all the passive scalar correlators can be 
calculated directly from the p.d.f, of the stretching rate. Here we will limit ourselves to the computation of the 
p.d.f, of the simultaneous product Q and to the single point p.d.f, of the passive scalar. For this purpose we 
reduce the problem to an auxiliary exactly solvable quantum mechanical problem (see Appendix B). In such 
a way we are able to obtain explicitly (see (B.4)) the Laplace transform 

T 

= limoo(exp(-sQr)), QT = P2J~2(R(t))dt. P t ( s )  (20) 

0 

79L is defined on the complex plane with a cut going from -N(N - 1 )Ds/4P2 to -o0. Thus, 

+ioo 

l f N(N_4~2I)Dsy(QD/2P2 ) ~'(O) = ~-~ eSQT~L(s)ds _ 

--ioc 

+e,o 

~exp[-y2 f x d x  j r (y)  = + ln(L/r)l T-2-~  exp[ -yx2  + ixln(L/r)l. (21) 

For y - QN(N-  I)Ds/4P2 ~ ln(L/r) >> 1 the integral (21), computed by means of a saddle-point approxi- 
mation, gives 

2 ln(L/r) ( 1 [2y_in(L/r)]2 ) jr(Y) ~ v/'~ 2y + In(L/r) exp -~-~ , (22) 

and shows a Gaussian bump with a non-Gaussian tail. The predexponential factor in (22) is correct for finite 
deviations o f y  from the mean value (within many dispersion intervals) as long as y >> 1. 

The exact result (B.4) for PL(s) can also be used to compute the single-point p.d.f, of the passive scalar 
79sv(w). Indeed, the higher order correlation functions (02") differ from (Qn (rail)) only for a combinatorial 
factor 

( 0  2n) ----- (2n - 1 )!!(Qn(rdif)}, (23) 
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where we replaced the argument of Q with the diffusion scale and correspondingly r/L with the Peclet number 
Pe = rdif/L (the pumping-to-diffusion scale ratio). Thus, for the Laplace transform of the p.d.f, of 0 we get 

o o  2n l ~a2n~ (e -'0) V" S W_] Fn(Qn) 
= ~ (2n)! = ~ = (exp(½sZQ)) = "PL(-½SZ)" 

n = 0  n ~ 0  

(24) 

This gives the following exact expression for the single-point p.d.f, of 0, 

+ioo 

1 f eSQ•L(_S2/2) P , ( O ) -  2hi 

-l-oc 

ds = ~1 v'/N(N2pz- l)Ds f e,Z¢ exp[ln(L/r~)(ll + ~/1 -+ V/~q2 + q2)] dq, (25) 

- o c  

where z = O~/N(N- 1 )Ds/2P2. After a saddle-point evaluation of the integral (25) we get the following 

approximation for 7~sp(0) for O~/N(N- I)Ds/2P2 ,,, ln(L/rdif)>> 1, 

"Psp(O)cxexp (-~/O2N(N- l )Ds/2Pz + ln2(L/rdif)). (26) 

This formula shows the presence of an exponential tail. The exponent does not depend on the Peeler number. 
Thus, our exact result (25), generalizing the already obtained two-dimensional results [5], supports the basic 
statement about the exponential tail of the single-point p.d.f, of 0 advanced by Shraiman and Siggia [4]. 

5. Conclusions 

The formalism developed in Section 2 can be applied to many other problems: let us mention in the first place 
the study of N-level quantum-mechanical systems affected by a random noise of general kind. This problem can 
be reduced to the computation of averages of a time-ordered exponential of anti-Hermitian random matrices. 
In Ref. [14] the averaged density matrix for this problem was computed by a direct expansion, and essential 
use was made of algebraic properties which would not hold in the Hermitian case. With our method we can 
compute all the probability distribution functions directly. Moreover in the N = 2 case it has been shown [5] 
that our formalism can be adapted to the case of a finitely-correlated noise ("coloured" noise). There are no 
principal obstacles to the generalization of this approach to arbitrary N, and it would be interesting to study 
by this method the statistics of a passive scalar (and more generally of a passive tensor) advected by a random 
velocity field with finite correlation time in 3D space. 

Our formalism also provides an alternative to the supersymmetric approach [15,16] to the problem of N/2 
channels localization (see Ref. [9] for the N = 2 case). 
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Appendix A. Computation of the Jacobian 

Let us show the explicit form of the variable transformation 

qij = q~.j(P, ~'±) (A.l) 
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in the N = 3 case: 

-1- ~¢ - _ 
0'~, = am = p, - ~2,t 2.1 

0 '1 ,2  = b m  2 + icm 2 + , , : I//2,m, 
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+ ~ -  
~3+,~3],, 0'22 - a2 = P2 + !u2+.m~.U2~,- ~'3,2 3,~ 

0'1,3 - b~ 3 + ict 3 ~%.+m, ?/2.3 - -  b2,3 + ic2.3 + - + , , = = I ] /3 ,  2 -t-  ~ 2 , t ~ 3 , 1 ,  

, + ( j  - '~2 
0'2.1-  b, 2 -  i¢1.2 = (g2.., + g /2 . . , (p , -  P2) - Ig2,1 w2.1, - I g ~ I ( l g ~ l ~ l )  + ~3.+2(q/~I~L2 - ~ '~,) ,  

- + + - 2 
0'3.2 = b2.3 - ic2.3 = v,k~2 + (P l  + 2 p 2 ) ~ 2  + ~'3,1~2.1 -- g/3.2(~3.2) , 

0'3,1=-bt,3 - icl3, -- ~)~l - ~£1~)3,2 + Pt ( 2 ~ ,  - ff/2lff/3_2) + P 2 ( ~ / L I .  , - 2~u2~,~3-2) - .  . ~u2,dU2,~u3,,+- + 

- W3+1 (~u{m)2 + ~3",2(~2~(~u{2) 2 -  ~u~2~uf~). (A.2) 

The form of (A.I)  for N > 3 can be easily obtained from the prescription (l 1). In order to compute the 
Jacobian of  the transformation we will make use of  the following properties of  (A. l ). First, observe that ( 11 ) 
is invariant with respect to the phase shift 

~ui,~--.,e±'~'.'~,,~, y ~ c ~ ; . j ( - l )  '+~ = 0, (A.3) 
i,.t 

while it can be easily checked that the functions (A. 1 ) are covariant under the same transformation. Therefore 
the Jacobian 3)¢ = 0 (0')/0 (p, ~t ~:) will be invariant under (A.3) and contain only "neutral" terms. Remember  
that we can arbitrarily chose the initial values ~u~ (0). This freedom is equivalent to the freedom in the choice 
of  the orientation of  R(O).  This fact, together with the isotropy condition, implies that the averaging measure 
must be invariant with respect to the uniform shift ~,~ (t) - .  ~u,~(t) + const,u. This means that J~¢ must not 
depend on the fields q/- (a more accurate inspection shows that it cannot even depend on ~k-). Neutrality 
then implies that ,7~¢ cannot depend on q/+ either. Lastly, one can show by direct computat ion that 

rli,J = ~j~i - (PJ - Pi)~Ti  "I- . . .  (i > j ) ,  (A .4 )  

where PN = - Y ~ . N i ~ l  Pi and the dots stand for terms which are non-linear in ~±  and therefore give no 
contribution to ,Y)v. A standard regularization procedure (gff  = g ± ( t ~ ) ; n  = 1 ..... M ; h  = t i M  ---, 0;t~ = 
t + h n ; M  ---, oo;~u- (t) --, ½(~,£ + ~'n--~); see Ref. [8])  produces then the simple expression (12). 

Our approach generalizes the results of  Ref. [7] to the case N > 2. Recently, expressions similar to (A.2) 
have been obtained in the framework of  conformal field theory [17]. However, the explicit form of the 
variables g + and of  the Jacobian ,7, which are essential for any physical application of  our method, were not 
computed there. 

Appendix B. Associated quantum mechanics 

Substituting Pi = ~,~(0) = 0 in (17) and (20) we reduce the computation of  P£(s )  to the following 
auxiliary quantum mechanical problem, 

[/( P £ ( s )  = e x p [ - ¼ N D s ( N -  l ) t ]  D~ exp - 4 D s ( N ' -  

¢(0)=0 0 

= e x p [ - ¼ N D , ( N  - 1 )tl(g(~')l e - t t r  I et~¢/2), 

with Hamiltonian 

I:I = D s ( N -  1)0¢2 + P2s¢2(re¢)" 
7v 

1).~ 2 + P :~2(eCr )  ) d t  + ½N~(T)  ] 

(B. l)  

(B.2) 
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The last average in (B.I)  designates a matrix element of  e x p ( - / : / t )  between states described by the corre- 
sponding wave functions. Let us take for ~2(x) the step function O(L - x):  this will give us the correct answer 
up to logarithmic corrections. T h e n / : / =  - [ D s ( N -  1)/N]O~ + U(~), where 

U(~) = Us = P2s, ~ < ~0=  ln(L/r), 
= 0, ( > (~ (B.3) 

Thus, 

PL(s)  = e x p [ - ~ N D ( N -  1)t]~v((  = 0, t = 0), 

where ~ is defined by the following initial value problem: Ot~ = - / : / ~ ,  ~v(~,T) = e ~¢/2. For ~ ~ oo 
the exponentially growing solution is proportional to exp[~ND(N-  I ) ( T -  t) + ½N(] for any t. So, for 

~ + o o , ~ ( ( , t )  ~ e ~/2. Generally speaking ~ ( ( )  ,.~ exp[ ¼ND~(N- l ) T ] f ( ( ) ,  for t --, oo, where f ( O  
satisfies the equation 

[ / : / +  ~ND, (N-  l ) ] f  = 0 

and has the asymptotic f ( ~  ---, +oc )  = e N/~z and f ( ~  --, - o o )  < c~. For the potential (B.3), this gives 

f (~) = e/vU2 + A e -~vDg/2, ~> ~o, 

( ~/ 4P2S)D,~/2) = B e x p  N 1 + N ( N -  1 ' ~<~" 

Here, the constants A and B must be defined matching f and O¢f at the point ~o. We finally obtain 

:Pz(s) = f ( (  = 0) = B 

2 e x p ( l n L [ l -  ~/1 + 4 P 2 s / N ( N - I ) D , ] )  (B.4) 
= 1 + ~/1 + 4P2s/N(N-  I )O,  7 
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